
Selected Solutions for Chapter 25:
All-Pairs Shortest Paths

Solution to Exercise 25.1-3

The matrixL.0/ corresponds to the identity matrix

I D

�
1 0 0 � � � 0

0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � 1

�
of regular matrix multiplication. Substitute0 (the identity forC) for 1 (the iden-
tity for min), and1 (the identity for�) for 0 (the identity forC).

Solution to Exercise 25.1-5

The all-pairs shortest-paths algorithm in Section 25.1 computes

L.n�1/ D W n�1 D L.0/ � W n�1 ;

wherel
.n�1/
ij D ı.i; j / andL.0/ is the identity matrix. That is, the entry in the

i th row andj th column of the matrix “product” is the shortest-path distance from
vertexi to vertexj , and rowi of the product is the solution to the single-source
shortest-paths problem for vertexi .

Notice that in a matrix “product”C D A � B, thei th row of C is thei th row of A

“multiplied” by B. Since all we want is thei th row ofC , we never need more than
thei th row ofA.

Thus the solution to the single-source shortest-paths fromvertexi is L
.0/
i � W n�1,

whereL
.0/
i is thei th row of L.0/—a vector whosei th entry is 0 and whose other

entries are1.

Doing the above “multiplications” starting from the left isessentially the same
as the BELLMAN -FORD algorithm. The vector corresponds to thed values in
BELLMAN -FORD—the shortest-path estimates from the source to each vertex.

� The vector is initially 0 for the source and1 for all other vertices, the same as
the values set up ford by INITIALIZE -SINGLE-SOURCE.



25-2 Selected Solutions for Chapter 25: All-Pairs Shortest Paths

� Each “multiplication” of the current vector byW relaxes all edges just as
BELLMAN -FORD does. That is, a distance estimate in the row, say the distance
to �, is updated to a smaller estimate, if any, formed by adding somew.u; �/ to
the current estimate of the distance tou.

� The relaxation/multiplication is donen � 1 times.

Solution to Exercise 25.2-4

With the superscripts, the computation isd
.k/
ij D min

�

d
.k�1/
ij ; d

.k�1/

ik
C d

.k�1/

kj

�

. If,
having dropped the superscripts, we were to compute and store dik or dkj before
using these values to computedij , we might be computing one of the following:

d
.k/
ij D min

�

d
.k�1/
ij ; d

.k/

ik
C d

.k�1/

kj

�

;

d
.k/
ij D min

�

d
.k�1/
ij ; d

.k�1/

ik
C d

.k/

kj

�

;

d
.k/
ij D min

�

d
.k�1/
ij ; d

.k/

ik
C d

.k/

kj

�

:

In any of these scenarios, we’re computing the weight of a shortest path fromi to j

with all intermediate vertices inf1; 2; : : : ; kg. If we used
.k/

ik
, rather thand .k�1/

ik
,

in the computation, then we’re using a subpath fromi to k with all intermediate
vertices inf1; 2; : : : ; kg. But k cannot be anintermediate vertex on a shortest path
from i to k, since otherwise there would be a cycle on this shortest path. Thus,
d

.k/

ik
D d

.k�1/

ik
. A similar argument applies to show thatd

.k/

kj
D d

.k�1/

kj
. Hence, we

can drop the superscripts in the computation.

Solution to Exercise 25.3-4

It changes shortest paths. Consider the following graph.V D fs; x; y; ´g, and
there are 4 edges:w.s; x/ D 2, w.x; y/ D 2, w.s; y/ D 5, andw.s; ´/ D �10.
So we’d add 10 to every weight to makeyw. With w, the shortest path froms to y

is s ! x ! y, with weight 4. With yw, the shortest path froms to y is s ! y,
with weight 15. (The paths ! x ! y has weight 24.) The problem is that by just
adding the same amount to every edge, you penalize paths withmore edges, even
if their weights are low.


