Selected Solutions for Chapter 25: All-Pairs Shortest Paths

Solution to Exercise 25.1-3

The matrix $L^{(0)}$ corresponds to the identity matrix
$I=\left(\begin{array}{ccccc}1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1\end{array}\right)$
of regular matrix multiplication. Substitute 0 (the identity for +) for ∞ (the identity for min), and 1 (the identity for \cdot) for 0 (the identity for +).

Solution to Exercise 25.1-5

The all-pairs shortest-paths algorithm in Section 25.1 computes
$L^{(n-1)}=W^{n-1}=L^{(0)} \cdot W^{n-1}$,
where $l_{i j}^{(n-1)}=\delta(i, j)$ and $L^{(0)}$ is the identity matrix. That is, the entry in the i th row and j th column of the matrix "product" is the shortest-path distance from vertex i to vertex j, and row i of the product is the solution to the single-source shortest-paths problem for vertex i.
Notice that in a matrix "product" $C=A \cdot B$, the i th row of C is the i th row of A "multiplied" by B. Since all we want is the i th row of C, we never need more than the i th row of A.
Thus the solution to the single-source shortest-paths from vertex i is $L_{i}^{(0)} \cdot W^{n-1}$, where $L_{i}^{(0)}$ is the i th row of $L^{(0)}$-a vector whose i th entry is 0 and whose other entries are ∞.
Doing the above "multiplications" starting from the left is essentially the same as the Bellman-Ford algorithm. The vector corresponds to the d values in BELLMAN-FORD-the shortest-path estimates from the source to each vertex.

- The vector is initially 0 for the source and ∞ for all other vertices, the same as the values set up for d by Initialize-Single-Source.
- Each "multiplication" of the current vector by W relaxes all edges just as Bellman-Ford does. That is, a distance estimate in the row, say the distance to v, is updated to a smaller estimate, if any, formed by adding some $w(u, v)$ to the current estimate of the distance to u.
- The relaxation/multiplication is done $n-1$ times.

Solution to Exercise 25.2-4

With the superscripts, the computation is $d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)$. If, having dropped the superscripts, we were to compute and store $d_{i k}$ or $d_{k j}$ before using these values to compute $d_{i j}$, we might be computing one of the following:
$d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k)}+d_{k j}^{(k-1)}\right)$,
$d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k)}\right)$,
$d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k)}+d_{k j}^{(k)}\right)$.
In any of these scenarios, we're computing the weight of a shortest path from i to j with all intermediate vertices in $\{1,2, \ldots, k\}$. If we use $d_{i k}^{(k)}$, rather than $d_{i k}^{(k-1)}$, in the computation, then we're using a subpath from i to k with all intermediate vertices in $\{1,2, \ldots, k\}$. But k cannot be an intermediate vertex on a shortest path from i to k, since otherwise there would be a cycle on this shortest path. Thus, $d_{i k}^{(k)}=d_{i k}^{(k-1)}$. A similar argument applies to show that $d_{k j}^{(k)}=d_{k j}^{(k-1)}$. Hence, we can drop the superscripts in the computation.

Solution to Exercise 25.3-4

It changes shortest paths. Consider the following graph. $V=\{s, x, y, z\}$, and there are 4 edges: $w(s, x)=2, w(x, y)=2, w(s, y)=5$, and $w(s, z)=-10$. So we'd add 10 to every weight to make \hat{w}. With w, the shortest path from s to y is $s \rightarrow x \rightarrow y$, with weight 4 . With \widehat{w}, the shortest path from s to y is $s \rightarrow y$, with weight 15. (The path $s \rightarrow x \rightarrow y$ has weight 24.) The problem is that by just adding the same amount to every edge, you penalize paths with more edges, even if their weights are low.

